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generalized Lamé differential equations, when their coefficients satisfy certain
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1. HEINE-STIELTJES AND VAN VLECK POLYNOMIALS

Let P, stand for the class of all algebraic polynomials of degree at most n,
and P = J,-, P.. The generalized Lamé differential equation (in algebraic
form) is

A@X)E"(x) + B(x)E'(x) — C(x)E(x) = 0, (1)
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where 4, B are polynomials of degree p + 1, p, respectively, and Ce P,_;.
The case p = 1 corresponds to the hypergeometric differential equation, and
p = 2, to the Heun’s equation (see [19]).

Heine [11] proved that for every N € N, there exists at most

—1
J(N):<N+15 >

different polynomials C in (1) such that this equation admits a polynomial
solution y € Py. These coefficients C are called Van Vleck polynomials, and
the corresponding polynomial solutions E are known as Heine—Stieltjes
polynomials.

In fact, Stieltjes studied the problem in the following particular setting.
The zeros a; of A4 are assumed to be simple and real, so that without loss of
generality we may take

—l=a<a<--<a,=1 2)

and 4 monic. Moreover, it is assumed that

B(x) 2, .
_— = d >0 :0... 3
o S o)

(this is equivalent to the assumption that the zeros of 4 alternate with those
of B and that the leading coefficient of B is positive). The case p, = -+ =
pp=1 /2 corresponds to the classical Lamé equation (in algebraic form).
Stieltjes proved in [28] (see also [29, Theorem 6.8]) that for each N e N
there are exactly o(N) different Van Vleck polynomials of degree p — 1 and
the same number of corresponding Heine—Stieltjes polynomials of degree N,
given by all possible ways how the N zeros of E can be distributed in the p
open intervals defined by the zeros a; of A. This allows a vector
parametrization in the class of Van Vleck and Heine—Stieltjes polynomials.
With every P € P we associate its zero-counting measure, v(P),

WPy =) o

P(x)=0

where the zeros are counted according to their multiplicity. Given a vector
n=(ny,...,np), we denote by E, € Py, N = nj + --- + n,, the unique (up to
a constant factor) Heine-Stieltjes polynomial, and by C, € P,_; the unique
Van Vleck polynomial, such that

/ldv(E,,):nl-, i=1,...,p.
aj—1
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Stieltjes [28] gave also the following characterization of the zeros of E,:

they are in the position of the electrostatic equilibrium in the field generated

by the positive charges p;/2 at a;, if the interaction obeys the logarithmic
law. In other words, the zeros

a0<Cl< <§n| <a <Cﬂ]+1< <Cm+n2<a2< <CN<ap (4)

of E, minimize the discrete energy

S om YA ! (5)
I — §j| ¢ — a_,-I’

1<i<j<N =0 i=1

among all the N point distributions satisfying (4).

Further generalizations of the work of Heine and Stieltjes followed
several paths; we will mention only some of them. First, under assumptions
(2)—(3) Van Vleck [30] and Bocher [5] proved that the zeros of C belong to
[ag,ap]. A refinement of this result is due to a series of works of Shah
[22-25]. Furthermore, Poélya [18] showed that for complex «; under
assumption (3) the zeros of E are located in the convex hull of the zeros
of 4. Marden [15], and later, Al-Rashed, Alam and Zaheer (see [1, 2, 32, 33])
established further results on location of the zeros of the Heine—Stieltjes
polynomials under weaker conditions on the coefficients 4 and B of (1). An
electrostatic interpretation of these zeros in cases when some residues p; in
(3) are negative has been studied by Griinbaum [10], and Dimitrov and Van
Assche [6]. A general approach to the electrostatic interpretation of the
zeros of orthogonal polynomials was proposed recently by Ismail [13].

An orthogonality property of the solutions of hypergeometric differential
equations (p = 1) is a well-known fact (see, e.g., [17]). The orthogonality of
products of different Heine—Stieltjes polynomials in the Cartesian product
space was proved by Germanski [7] and rediscovered recently by Volkmer
[31] (whose paper goes beyond this orthogonality); for the case of the Heun
differential equation (p = 2), this fact was established by Arscott [3] and
Sleeman [26] (see also [4,19, Section A.5.3]).

Nevertheless, nothing has been published about the zero asymptotics of
the Heine—Stieltjes and Van Vleck polynomials for large values of parameter
N. This is rather surprising, taking into account that the necessary
machinery existed for several decades.

The object of this paper is to study the asymptotic behavior of the zeros of
E, and C, when N = n; +--- 4+ n, — oo in such a way that

lim %:9,-, i=1,...,p. (6)
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We also allow that the polynomial coefficient B = B, in (1) depends on n in
such a way that the limit

lim =2 =B (7

exists and satisfies (3). In other words,

B,,()C) L Pin . Pjn
= Al . . >0 d 1 = = >0. 8
A) ; P N ®

The asymptotics for E, is understood in the sense of weak-* convergence.
Namely, we describe the limit of the sequence of normalized counting
measures v(E,)/N under assumptions (6), (8) in terms of the solution of a
certain extremal problem for vector logarithmic potentials. The main results
are stated in Section 2, their proofs are presented in Section 3, and particular
cases are discussed in Section 4.

Our method is applicable also when not all the residues p; are positive,
but we still have electrostatic equilibrium. This is a situation described by
Dimitrov and Van Assche [6], and in Section 5 we derive the asymptotics for
the corresponding Heine—Stieltjes and Van Vleck polynomials. This
situation yields to an equilibrium problem in a non-convex external field.

2. VECTOR EQUILIBRIUM PROBLEM AND ZERO DISTRIBUTION

If p is a finite and compactly supported Borel measure on the complex
plane C, we denote by supp(u) its support, by

1
V(wz) = /ln -

its logarithmic potential, and by

1) = / / In () i)

its logarithmic energy.

A function w:[—1,1] - R, is an admissible weight on [—1,1] if w is
upper-semicontinuous and the set {xe[—1,1]:w(x)>0} has positive
logarithmic capacity (for basic definitions, see, e.g., [20, Section I.1] or
[27, Appendix]). The (admissible) external field ¢ on [—1,1] is defined by

W(x) = ei(p(X): X € [_17 1]9
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and the weighted energy I,(u) of a Borel measure p on [—1, 1], by

Lp(u)=1(u)+2/<ﬂdu~

Let 4" be the standard simplex in R?~!,

P
m—{a—(el,...,e,,):e,go, i=1,...,p, and ZH,-—I}.
i=1

For 0 € ./ denote by .#(0) the class of all unit Borel measures u on [—1,1]

such that?
a;
/ du =20, i=1,...,p.
a1

i

Given 6 € ./~ we can consider the problem of minimization of the weighted
energy /,(1) in the class .#(6). In fact, this is a particular instance of the
vector-valued equilibrium problem for the vector potentials: the restriction
of the solution p to a particular subinterval [a;_;, a;] solves the equilibrium
problem in the presence of the external field jointly generated by ¢ and the
potential of the remaining part of u. Thus, the following lemma is a direct
consequence of the well-known results (see [8,20, Theorem VIII.1.4]):

LEMMA 1. Let ¢ be an admissible weight. For every 0 € A~ there exists a
unique g € M (0) (the equilibrium measure) such that

Lo(ng) <Iyp(w),  for every pe 4(0).

Moreover, 1y is characterized by the following property: fori=1,..., p,

E{nin ] (V(ugsx) + @(x)) = V(ng: x) + @(x),  x € supp(pg) N [ai-1,ai].  (9)
xelai-1,a;

Finding the explicit solution for a given equilibrium problem is in general
a formidable task. In the case we are interested in, we can describe

the equilibrium measure i, as follows: Let B and p; be given in (7) and (8).
Then

P

o) =3 %m x— a (10)

=0

defines an admissible external field on [—1, 1].

2We remark that the conditions on .#(0) imply that u € .#(0) have no mass points at a;’s.
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We make the following convention: if A is an analytic and single-valued
function in C\[—1, 1], we understand by H(x) for x e (—1,1) the boundary
values of H from the upper half plane. Let us also denote

nzl-l-zp:
j=0

J (11

|2

Then, we have the following result which is proved in Section 3:

THEOREM 1. Let O € P2, be a polynomial of the form
2p
0@ =" [[ o). (12)
=1

with [aoj—1,0;] < [aj—1,a;] for j=1,..., p, and let
K =[a, 0] U--- U laa,_1,0,].

In C\K we fix the single-valued branch of \/Q by

tim Y25 = 03

If conditions (6) and (8) are fulfilled, then given 0 and ¢, there exists a unique
O = Oy as above, determined by the following conditions:’

VOia) ="J 4@y, j=0....p, (14)
azi VAQ(igx)dxz—mej, j=1,...,p—1 (15)

021

Then the equilibrium measure L is absolutely continuous with respect to the
Lebesgue measure,

supp(py) = K = {x e R: Oy(x) <0},

! \/@(x) xekK

o) =~ Ax)

(16)

*In particular, if 0; = 0, then oy;_| = 0y;.
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and

/duo(t):H(Z): B@)  VOD

z—t 24(z) Az)
We consider particularly the case B = 0, that is,
po=-=p,=0,

which appears, for example, when B, does not depend on n.

COROLLARY 1. Let B=0. There exist p — 1 points
—1<p < <B, <1

uniquely determined by the following system of equations:

lm/'/Ho(x)dx:fnej, j=1,...,p—1,
aj—1

Ry(x) pl
Hy(x) = ,/ﬁ, Ro(x) = g(x —B)).

If we introduce the counting function

Z(x) = [v(4) — v(Rp)I((—00, x]),

where

then

supp(ig) = x € R: Z(x) = 1.

137

amn

(18)

(19)

(20)

The support supp(py) of w1y consists of at most p — 1 disjoint intervals in

[-1,1].
Furthermore, g is an absolutely continuous measure,

1 1
Ho() = ——Ho(x) = _|Hop(x)l,  x € supp(yp),

and for z ¢ supp(piy),
/M = Hp(2).

z—1

e2y)

(22)
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Finally, we establish the following relation between the equilibrium
problem described above and the distribution of zeros of Van Vleck and
Stieltjes polynomials.

Let us denote the weak-* convergence of a sequence of measures v, on
[—1,1] to a measure v by v, — v, meaning that

/fdv,, —>/fdv, VfeC-1,1]

THEOREM 2. Assume that E, and C, are as above and (6), (8) hold. If u,
and Qg are as in Theorem 1, then for all z € C,

00— (B/2)

it 23)

in particular, the zeros of Van Vieck polynomials C, converge to those of C.
Furthermore,

v(E
Vp = (N”) - Ly, (24)
Consequently, if the E,’s are normalized to be monic, then
: 1
lim |E,)]'Y = exp(—V (1p32)) = |z exp [ / (H(z) - ) dz] ., (©5)
n 0 zZ

uniformly on compact subsets of C\[—1, 1].

3. PROOF OF THE MAIN RESULTS

First of all, Eq. (24) is a consequence of the electrostatic interpretation of
the zeros of E and we establish it using a modification of the proof of the
asymptotic behavior of the weighted Fekete points (see [20, Theorem 1.3,
Section III.1]). Indeed, let

L p.
Qux) = — ; T’IH Ix — aj

be the external field generated by the positive charges at the zeros of 4.

According to the electrostatic interpretation given by Stieltjes, if we define

1
s [ [ mpdEa a0 +2 [ gndnEn, 26
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then, for any N distinct points —1 <z} < --- <zy <1 such that exactly n; of
them belong to (a;_1,a;), i =1,..., p, we have that

N
Sv< =Y Inlz—z1+2 ) ¢,).
i#j i=0

Integrating this inequality with respect to dyy(z) ... dpy(zy), we get that
Sy <N(N = DI(g) + 2N / Pudity 27

On the other hand, for ¢ > 0 define
K. (x, )= min{—In |x — Y, —Ine}.

For every fixed ¢ > 0 we have

/ / Ko, ) dv(E)0) dv(En)(y) + 2 / 0 dV(Ey)
- / Ko, ) dv(En)() dY(En(3) +2 / 0 dV(Er) — NIne
X#Yy

<oy —NIlne<NWN — 1)1(,u0)—|—2N/(p,,du9 — Nlne,

where we have used (27). By compactness of the sequence v,, we may take a
subsequence A of the indices n such that v,, n € A, converges (in the weak-*
topology) to a measure v supported on [—1, 1]. Dividing by N and taking
limits, we get

| [Kenamam 2 [ odw<im.
where ¢ is given by (10). Taking now ¢ — 0 we see that

Iw(v) <Izp(.ut))~

From the uniqueness of the extremal measure y,, it follows that v = y, and
we get (24). This fact will help us in describing the equilibrium measure pu,.

Indeed, we can rewrite the differential equation (1) in terms of the
function # = E' /E, reducing it to a Riccati equation (see, e.g., [14, 1.4.9; 21]
or [34, Section 86]):

AX)(H(x) + B (x)) + Bu(x)h(x) — Cy(x) = 0. (28)
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In particular, if E = E,, we have that

E,(x) / dvEND _ / dva(?)

Eu(x) x—t x—t

ha(x) =

By (24),

()N — H(x) = / ‘f%(?,

locally uniformly in C\[—1, 1]. If we rewrite (28) as

Alx )<h2(X) hy (X)> 4 Bn) hax) _ Culx)

N2 N2 N N  N2°

we see that the left-hand side converges along the chosen subsequence to the

function AH? + BH. Thus, the right-hand side also converges locally

uniformly in C\[—1, 1], which proves the existence of the limit in (23).
Denoting by C the limit of C,/N?, we readily see that

B | /0@ (B’
H(z) = _2A(z)+ AQ) X 0= (§> +AC, (29)

(compare with (17)).
The behavior of \/Q at z = oo is determined by the fact that

dpg(?)
zZ

lim zH(z) = lim z ; dt = 1.

Z—>00 Z—>>00

Indeed, by (8),

. zB(Z)
Jlim A(z) Z Pj
so that we must take in (29)

o VOB _ V06

Z00 A(Z) T o zP

as in (13).

We can recover the measure y, using either the well-known Stieltjes—
Perron inversion formula or the Sokhotski-Plemelj theorem (see, e.g., [12,
Section 14.1]). Thus, from (29) we get that

1 VOX)

#Q(X) = P, A
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Since p, is a positive measure on [—1, 1], its support K will be the closure of

the set
A= {xe [~1,1]: ViAQ()E’)C)<o}. (30)

On each subinterval [a;_1, a;] the external field (10) is a convex function, thus
(see, e.g., [20. Section IV.1]), supp(pg) U [a;-1,a;] will be connected. In other
words,

= [og,00] U U [0ap-1,00))
for [oj—1, 0] < [a;-1,a;]. By (30),
O(a;) =0, Jj=1....2p,

and from (13) we deduce (12).

Let us establish the necessary conditions on Q (later we will see that they
are also sufficient). First, in our situation equations (15) are equivalent to the
fact that py € #(6).

Furthermore, iffor j € {0, 1,..., p}, p; >0, then a; ¢ K. In such a case, H
must be holomorphic in a neighborhood of a;, so that

res H(z) =0,
which renders (14) for p; > 0.
Let # be an analytic multlvalued function in C\K such that

Re 7(z) = V(ug:2) + 9(2),  zeC\K

Then
o BE)  A/OO
M VTE R TE
Thus,
V(ug;z) + @(z) = —Re < VA%Z()Z dz) + const. (31

Taking into account (9), V(ug;z) + @(z) is bounded at a; if and only if
p; = 0, which by (31) is equivalent to O(a;) = 0. This establishes (14) for the
remaining case.

Finally, Eq. (25) is an immediate consequence of (24), (31), and the fact
that for monic E,,

lim [Ea(2)/2"] = 1.
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It remains to establish the uniqueness of Q, for which it is sufficient to
show that conditions above characterize the equilibrium measure (the
uniqueness of the latter does the rest).

Assume that we have constructed a polynomial Q = Qy satisfying (12)—
(15). Then

K = [O‘l,OCZ] RN [O(prlaon] = ya

where ¢ is given in (30). Consequently, the function on the right-hand side
of (16) is positive on K and non-positive on R\K. Thus, (16) defines a
positive absolutely continuous measure on K, which, according to (15),
belongs to .#(0). Furthermore, by the interlacing property of a;’s and «;’s,
forj=1,...,p,

\/@ > () for w1 <x<aj,

Ax) | <o for a; | <x<a; .

Taking into account the expression in (31) we deduce that for each
j = 13 s P

¢; = const for x e [on—1, o)),
V(g;2) + ¢(2)
>¢j for x € [a;-1, a]\[#;-1, 9],
which, by (9), characterizes the equilibrium measure of Lemma 1.
Let us switch now to the proof of the Corollary, when 5 = 1. First of all,
by (14), p+ 1 zeros of Q coincide now with ao,...,a,, so that by (12),

p—1
0G) = A@Ro(2),  Ro@) =[] - B). B el-1.1]
j=1

Denote

A(z) A(z)’

ooy - VOO _ [Roe)

taking, by (13),

lim zHy(z) = 1.
Z—>00

Then (15) reduces to (18), where we have used the fact that for each j,
supp(tg) N [aj-1,4a;] is connected. Moreover, (16) and (17) reduce to (21)
and (22), respectively.
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It remains only to prove (20). This is a consequence of the fact that
supp(y) is the closure of

A= {xe[=1,1]: iHy(x) > 0}

(where we follow our convention of taking the limit values from the upper
half plane). Indeed, by the selection of the branch of Hy,

arg Hy(x) = —m, x<0.

Taking into account the form of Hy, it is easy to verify that
T
argHo(x) = 5(Z(x) —2),  xe R\({ao, ..., ap} U AP, s Bpei}):

From the definition of #" we get (20). This relation shows that at least one
endpoint of each connected component of supp(u,) belongs to {ao,...,a,}.

4. SOME SPECIAL CASES

In this section we consider some important particular cases of the
previous theorems.

Obviously, the simplest situation is when p = 1, which corresponds to an
hypergeometric equation. To be more precise, Eq. (1) in this case is the
differential equation for Jacobi polynomials. The zero distribution of the
Jacobi polynomials with varying weights has been studied before (see, e.g.,
[20, Sections IV.1 and IV.5]). In particular, now the only condition on the
measure, (14), reduces to

JTFa(dm =P e —m) =D

24 potpr 24 potpy

which coincides with the equation on the endpoints of the support given in
[20, Example IV.1.17]. Moreover, Eq. (16) corresponds to formula (IV.5.8)
in the same monograph.

The case p =2 corresponds to the well-known and thoroughly studied
Heun equation [19]. Now we have two intervals, [—1,a;], [a1,1], and
respective constants, 01,0, = 1 — 6, (cf. (6)), and conditions (14) and (15)
yield equations involving elliptic integrals. In particular, when B = 0, we
obtain that

supp(ug) = [—1,a] © [B, 1].
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If

1 [ 1 1 1
91<_/ a{x:_+EarCSin(a1), (32)

141 —x2 2

then o €[—1,a] and f§ = a;; otherwise, « = a; and f € [a;, 1]. Moreover,
under condition (32) the endpoint « is obtained from Eq. (18), which takes

the form
* o—x
/,l \/(x+ Dia — o o= ™"

After some cumbersome computation, it can be rewritten in terms of
standard elliptic integrals (see [9, Section 3.167]) as

V2 m (1 — m, k) — K(k)) = 701 /(1 + ar)m, (33)

_ Ja—apa +a) B

K(k) = / T db I(m, k) = / " ¢
0 \/lszsinzqﬁ’ ’ 0 (1 —msin®$)y/1 — k2 sin® ¢

are the elliptic integrals of the first and third kinds in the Legendre normal
form.
Equation (33) can be presented in another equivalent way as

0 (¥ K(+/u)
_ g2 =
2 = a) /() I—a+1+ al)u)3/2 du = . (34

which is suitable for differentiation. Thus, combining (33) and (34) we can
easily apply the Newton method in order to find the endpoint o (or
equivalently, the modulus k) corresponding to a value of a parameter 6;. For
instance, the following iteration starting from ky = 0.25,

where

and

(e - mk - Kw)
k_1+l—kj ( \/m 7'501 D]
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FIG. 1. Relation between 0<6; <1/2 and « (the free endpoint of the support) for a; = 0.

with

Uta), o ml0—a)
l—a 7’ 72200 an) kK (k)

provides a quadratic convergence to the value of k, corresponding to the
given 6;. It remains to take

mj =1+

Car— 1+ (1 + a)k?
Cl—a + (1 +a)k?

In this way we computed the relation between 6, (0<60;<1/2) and « (the

free endpoint of the support) for a; = 0 and B = 0, presented in Fig. 1.
Finally, inequality (32) is a consequence of the following general

observation, based on the uniqueness of the equilibrium measure:

ProPoOSITION 1. The zeros of the Heine—Stieltjes polynomials subject to
conditions (2), (6) and (7) are dense on [—1,1] if and only if B =0 and

arcsin(a;) — arcsin(a;_;) = n 0}, j=1...,p—1.

5. NEGATIVE RESIDUES

In contrast to the classical results cited in Section 1, the case when the
residues p; are allowed to take negative values has not been thoroughly
studied. In this case, even the existence and unicity of both Van Vleck and
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Heine—Stieltjes polynomials is not a trivial question. Some situations when
this existence and uniqueness are guaranteed have been studied by Dimitrov
and Van Assche [6]; namely, they considered the case p = 3 and the signs of
p;’s distributed as in Fig. 2.

As was shown in [6], in this case for every sufficiently large N € N there
exists a unique pair (Cy, Ey) of, respectively, Van Vleck and Heine—Stieltjes
polynomials with deg Ey = N. All zeros of Ey belong to the interval
enclosed by a;’s with p; >0, and they are in the equilibrium position, given
by the absolute minimum of the discrete energy (5).

Thus, we can apply the methods above in order to find the asymptotic
distribution of these zeros. Observe that the electrostatic interpretation
yields the extremal problem (9) with a non-convex external field, and the
connectedness of the support of the equilibrium measure is no longer
guaranteed. Nevertheless, the differential equation (1) contains additional
information which allows to obtain the Stieltjes transform of the limit
distribution. Once again, it will be described by a polynomial Q as in (12),
except that now some of the zeros will leave [—1, 1].

We consider the asymptotics with conditions such as in (8). Since all the
zeros of the Heine—Stieltjes polynomials belong now to the same interval, it
is sufficient to introduce the scalar index N. Thus, we assume that —1 =
apg<a1<ary<az =1,

By (x) . PiN . PN
= 2 Iim == p; 35
A(x) ,Z:o: x—aj Vo N P (35)

and restrict our attention to the situation described in [6] (up to a misprint)
when the existence and unicity are guaranteed. Namely, for a sufficiently
large N, let the coefficients p;, have the signs according to one of the
following cases (depicted in Fig. 2):

PonsP1x <0, pansP3y >0, N arbitrary

(C.1)
(then, py, p; <0 and py, p3=0);
3
PonsPan <0, PinsPan >0, N>1=370 4 o,
(C.2)
(then, py,p3<0 and py, p, =0).
- - + A+ - + A+ -
2%) a; a2 asz ap a, ay as

FIG. 2. Cases (C.1) (left) and (C.2) (right).
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We assume initially that # 70, where n was defined in (11); in the situation
(C.2) we have necessarily #>1/2. Let us denote by 4 the interval [a;_i,a/],
determined by the positive residues. The following result holds:

THEOREM 3. Assume that either case (C.1) with n#0 or case (C.2) with
n >0 holds. Let Q be a polynomial of the form

0@) = 1’z — m)*(z — )z — Bz — Bo), (36)

with ay,00 € R, [B1, 2] < 4, and let

lim V2@ _ 7 (37)

Z—00 23

Then there exists a unique Q of this type, determined by the following system
of equations:

J0(@) = %A'(aj), i=0,....3 (38)

The relative position of the zeros of Q is represented in Fig. 3.
The equilibrium unit measure u on A under the external field ¢ given in (10),
is absolutely continuous with respect to the Lebesgue measure, supp(y) =

[B1: Bal,
1 vOW)

) =—— . xesupp(u) (39)
wi A(x)
ay az B1 B2
o [ ] o e @ OmmmmmmO © Case(C.1), n >0
a, a, a, ag
az B1 B2 a
[ ] o e 0 OmmmmmmO © o Case(C.1), N<0
ao al a2 a3
ai B1 B2 az
o ® ® OmmmmmmmO @ [ ) o Case(C.2), N>0
2h) a a, az

FIG. 3. Zeros of Q and the support of u.
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and
d
[0 ne =2 VO . @)
For all ze C,
- 2
Jim YO _ o L OB, (@)

in particular, the zeros of Van Vleck polynomials Cy converge to those of C.
Furthermore,

) 42)
Consequently, if the Ey’s are normalized to be monic, then
L e A N GO R 1 e
N—00 00 y4

uniformly on compact subsets of C\[—1,1].

Proof. As it was observed above, from the electrostatic interpretation of
zeros, derived in [6], we obtain (42), where u is the equilibrium measure. In
the notation of Section 2, u = py € .#(0), where 6 = (0,0, 1) (in case (C.1)),
or # =(0,1,0) (in case (C.2)). Furthermore, from the differential equation
we obtain that the limit in the left-hand side of (41) exists, which defines the
polynomial Q. This yields expression (40) of the Stieltjes transform of g,
from which (39) immediately follows.

On the other hand, Egs. (14) and (15) on Q reduce now to (38). Thus, it
remains to show that Q is of the form (36). Observe that now the external
field ¢ in (10) is no longer convex, and the connectedness of the support of u
is not trivial.

In analogy with Corollary 1, let us introduce the counting function

Z(x) = W(O)((—00,x]) = number of zeros of Q in (—oco,x].  (44)
Then by (37),
arg(\/O) = —arg) —5Z(x), i xe R, O()#0,
and

11131 Z(x) =0, ligl Z(x) =2mod 4.
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Assume that p;#0, j=0,...,3. By Eq. (38),
>0 for j=0,3,
v Ola)) in case (C.1),
<0 for j=1,2,

and

>0 for j=0,1,
v Ola)) in case (C.2).
<0 for j =2,3,
Consider first case (C.1), and let # > 0. Then we have
Z(a;j) =2mod 4, for j=0,3, and Z(a;) =0mod4, for j=1,2.

Since Z is an integer-valued increasing function, and taking into account the
behavior at + 00, we see that in this case necessarily

Zag) =2, Z(a)) =4, Z(a)=4, Z(a3)=6, lilf Z(x) = 6.

This means that all the zeros of Q are real, two of them belong to (—o0, ay),
other two, to (ag,a;), and the last pair, to (az,a3). By (40), O cannot have
simple zeros in R\ 4. Thus, the zeros in (—00, ay) and (o, a;) are double, and
Q is of the form (36), where

o) € (—00,a9] and oy € [ag, a1].

Analogously, when <0, we obtain that

Z(a()) = 0, Z(al) = Z(az) = 2, Z(CZ}) = 4, xkljlrlx Z(x) = 6,

and Q is of the form (36) with
oy € [as,+00) and oy € [ag, @1].
Finally, in case (C.2) with # >0 we have
Z(aj)=2mod4, for j=0,1, and Z(a;) =0mod4, for j=2,3,
so that

Z(ag) = Z(ay) = 2, Z(ay) = Z(a3z) = 4, ‘CETOC Z(x) = 6.
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Thus, Q is of the form (36) with
o) € (—00,a09] and o € [az, +00).

If one or more p; = 0, then the corresponding o’s coincide with a;, and the
conclusions above remain valid. 1

ACKNOWLEDGMENTS

The research of the first author was conducted while visiting the University of South Florida.
His work was partially supported by INTAS Project 2000-272, by a research grant from
Ministerio de Ciencia y Tecnologia (MCYT) of Spain, Project Code BEFM2001-3878-C02-02,
and by Junta de Andalucia, Grupo de Investigacion FQM 0229. The second author was
partially supported by the US National Science Foundation under Grant DMS-0100737.

REFERENCES

1. A. M. Al-Rashed and N. Zaheer, Zeros of Stieltjes and Van Vleck polynomials and
applications, J. Math. Anal. Appl. 110 (1985), 327-339.

2. M. Alam, Zeros of Stieltjes and Van Vleck polynomials, Trans. Amer. Math. Soc. 252
(1979), 197-204.

3. F. M. Arscott, Two-parameter eigenvalue problems in differential equations, Proc. London
Math. Soc. 14 (1964), 459-470.

4. F. M. Arscott, Polynomial solutions of differential equations with bi-orthogonal properties,
in “Conference on the Theory of Ordinary and Partial Differential Equations,” pp. 202—
206, Univ. Dundee, Dundee, 1972. Lecture Notes in Mathematics, Vol. 280, Springer-
Verlag, Berlin, 1972.

5. M. Bocher, The roots of polynomials that satisfy certain differential equations of the second
order, Bull. Amer. Math. Soc. 4 (1897), 256-258.

6. D. K. Dimitrov and W. Van Assche, Lamé differential equations and electrostatics, Proc.
Amer. Math. Soc. 128 (2000), 3621-3628.

7. B. Germanski, An identity in the theory of the generalized polynomials of Jacobi, Proc.
Amer. Math. Soc. 9 (1958), 953-956.

8. A. A. Gonchar and E. A. Rakhmanov, The equilibrium problem for vector potentials,
Uspekhi Mat. Nauk 40 (1985), 155-156.

9. 1. S. Gradshtein and I. M. Ryzhik, “Table of Integrals, Series and Products,” 5th ed.,
Academic Press, San Diego, CA, 1995.

10. F. A. Griinbaum, Variations on a theme Heine and Stieltjes: An electrostatic interpretation
of the zeros of certain polynomials, J. Comput. Appl. Math. 99 (1998), 189-194.

11. E. Heine, “Handbuch der Kugelfunctionen,” Vol. II, 2nd ed., G. Reimer, Berlin, 1878.

12. P. Henrici, “Applied and Computational Complex Analysis,” Vol. 3, John Wiley & Sons
Inc., New York, 1986.

13. M. E. H. Ismail, An electrostatic model for zeros of general orthogonal polynomials,
Pacific J. Math. 193 (2000), 355-369.

14. E. Kamke, “Differentialgleichungen. Losungsmethoden und Loésungen. 1. Gewohnliche
Differentialgleichungen,” Teubner, Stuttgart, 1977.



15

16.
17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

32.

33.

34.

HEINE-STIELTJES AND VAN VLECK POLYNOMIALS 151

. M. Marden, “Geometry of Polynomials,” 2nd ed., Mathematical Surveys, Vol. 3, American
Mathematical Society, Providence, RI, 1966.

Deleted in proof.

A. F. Nikiforov and V. B. Uvarov, “Special Functions of Mathematical Physics,”
Birkhauser, Basel, 1988.

G. Polya, Sur un théoreme de Stieltjes, C. R. Acad. Sci. Paris 155 (1912), 767-769.

A. Ronveaux (Ed.), “Heun’s Differential Equations,” The Clarendon Press Oxford Univ.
Press, New York, 1995.

E. B. Saff and V. Totik, “Logarithmic Potentials with External Fields,” Grundlehren der
Mathematischen Wissenschaften, Vol. 316, Springer-Verlag, Berlin, 1997.

E. B. Saff, J. L. Ullman, and R. S. Varga, Incomplete polynomials: an electrostatics
approach, in “Approximation Theory III,” pp. 769-782, (Proceedings of the Conference
Univ. Texas, Austin, TX, 1980), Academic Press, New York, 1980.

G. M. Shah, On the zeros of Van Vleck polynomials, Proc. Amer. Math. Soc. 19 (1968),
1421-1426.

G. M. Shah, Confluence of the singularities of the generalized Lamé’s differential equation,
J. Natur. Sci. Math. 9 (1969), 133-147.

G. M. Shah, Monotonic variation of the zeros of Stieltjes and Van Vleck polynomials,
J. Indian Math. Soc. (N.S.) 33 (1969), 85-92.

G. M. Shah, On the zeros of Stieltjes and Van Vleck polynomials, Illinois J. Math. 14
(1970), 522-528.

B. D. Sleeman, “Some boundary-value problems associated with the parabolic cylinder
equation and the Heun equation,” Ph.D. Thesis, University of London, 1965.

H. Stahl and V. Totik, “General Orthogonal Polynomials,” Encyclopedia of Mathematics
and its Applications, Vol. 43, Cambridge Univ. Press, Cambridge, U.K., 1992.

T. J. Stieltjes, Sur certains polynémes que vérifient une équation différentielle linéaire du
second ordre et sur la teorie des fonctions de Lamé, Acta Math. 6 (1885), 321-326.

G. Szegd, “Orthogonal Polynomials,”” 4th ed., American Mathematical Society Colloquium
Publications, Vol. 23, American Mathematical Society, Providence, RI, 1975.

E. B. Van Vleck, On the polynomials of Stieltjes, Bull. Amer. Math. Soc. 4 (1898), 426-438.
H. Volkmer, Expansions in products of Heine-Stieltjes polynomials, Constr. Approx. 15
(1999), 467-480.

N. Zaheer, On Stieltjes and Van Vleck polynomials, Proc. Amer. Math. Soc. 60 (1976),
169-174.

N. Zaheer and M. Alam, On the zeros of Stieltjes and Van Vleck polynomials, Trans. Amer.
Math. Soc. 229 (1977), 279-288.

D. Zwillinger, “Handbook of Differential Equations,” 3rd ed., Academic Press, San Diego,
CA, 1998.



	1. HEINE–STIELTJES AND VAN VLECK POLYNOMIALS
	2. VECTOR EQUILIBRIUM PROBLEM AND ZERO DISTRIBUTION
	3. PROOF OF THE MAIN RESULTS
	4. SOME SPECIAL CASES
	FIGURE 1

	5. NEGATIVE RESIDUES
	FIGURE 2
	FIGURE 3

	ACKNOWLEDGMENTS
	REFERENCES

